
Recovery Oriented Computing (ROC) 

Dave Patterson and a cast of 1000s:  
Aaron Brown, Pete Broadwell, George Candea†, Mike Chen, 

James Cutler†, Armando Fox,  Emre Kıcıman†, David 
Oppenheimer, and Jonathan Traupman 
U.C. Berkeley, †Stanford University 

November 2010 [2002-2005] 



Slide 2 

Outline 
 

• Recovery-Oriented Computing: Motivation 
 

• What Can We Learn from Other Fields? 
 

• ROC Principles and Lessons in Retrospect 
 

• ROC => AMP Lab (if time permits) 



Slide 3 

The past: research goals and 
assumptions of last 20 years 

• Goal #1: Improve performance 
• Goal #2: Improve performance 
• Goal #3: Improve cost-performance 
• Simplifying Assumptions 

– Humans are perfect 
– Software will eventually be bug free  
– Hardware MTBF very large 
– Maintenance costs irrelevant vs. Purchase price 



Slide 4 

Dependability: Claims of 5 9s? 
• 99.999% availability from telephone company? 

– AT&T switches < 2 hours of failure in 40 years 
• Cisco, HP, Microsoft, Sun … claim 99.999% 

availability claims (5 minutes down / year) in 
marketing/advertising 
– HP-9000 server HW and HP-UX OS can deliver 
99.999% availability guarantee “in certain pre-
defined, pre-tested customer environments”  

– Environmental? Application? Operator? 

9 9 9 9 9 5 9s from Jim Gray’s talk: 
“Dependability  

in the Internet Era” 



Slide 5 

“Microsoft fingers technicians  
for crippling site outages” 

 By Robert Lemos and Melanie Austria Farmer,  ZDNet News,  January 25,  2001  
• Microsoft blamed its own technicians for a 
crucial error that crippled the software giant's 
connection to the Internet, almost completely 
blocking access to its major Web sites for nearly 
24 hours… a "router configuration error" had 
caused requests for access to the company’s 
Web sites to go unanswered… 

• "This was an operational error and not the result 
of any issue with Microsoft or third-party 
products, nor with the security of our networks," 
a Microsoft spokesman said. 9 9 



Slide 6 

Learning from other fields: 
disasters 

Common threads in accidents ~3 Mile Island 
1. Latent errors accumulate 
2. Operators cannot fully understand system  
3. Tendency to blame operators afterwards 
4. Systems never working fully properly 
5. Emergency Systems often flawed 

– Facility running under normal operation masks errors in error 
handling 

Source: Charles Perrow, Normal Accidents: Living with High Risk Technologies, Perseus Books, 1990 



Slide 7 

Learning from other fields: 
human error 

• Two kinds of human error 
1) slips/lapses: errors in execution 
2) mistakes: errors in planning 

• Human errors are inevitable 
– “humans are furious pattern-matchers” 

» sometimes the match is wrong 
– cognitive strain leads brain to think up least-effort 

solutions 
• Humans can self-detect errors 

– 75% errors immediately detected 

Source: J. Reason, Human Error, Cambridge, 1990. 



Slide 8 

Human error 
• Human operator error is the leading cause of 
dependability problems in many domains 
 
 
 
 
 
 

• Operator error cannot be eliminated 
– humans inevitably make mistakes: “to err is human” 
– automation irony tells us we can’t eliminate the human 

Source: D. Patterson et al. Recovery Oriented Computing (ROC): Motivation, Definition, Techniques, 
and Case Studies, UC Berkeley Technical Report UCB//CSD-02-1175, March 2002. 

59%22%

8%

11%

Operator
Hardware
Software
Overload

51%

15%

34%

0%

Public Switched Telephone Network Average of 3 Internet Sites 

Sources of Failure 



Slide 9 

The ironies of automation 
• Automation doesn’t remove human influence 

– shifts the burden from operator to designer 
» designers are human too, and make mistakes 
» unless designer is perfect, human operator still needed 

• Automation can make operator’s job harder 
– reduces operator’s understanding of the system 

» automation increases complexity, decreases visibility 
» no opportunity to learn without day-to-day interaction 

– uninformed operator still has to solve exceptional 
scenarios missed by (imperfect) designers 

» exceptional situations are already the most error-prone 

• Need tools to help, not replace, operator  
Source: J. Reason, Human Error, Cambridge University Press, 1990. 



Slide 10 

Learning from others: Bridges 
• 1800s: 1/4 iron truss railroad  
bridges failed! 

• Safety is now part of  
Civil Engineering DNA 

• Techniques invented since 1800s:  
– Learn from failures vs. successes  
– Redundancy to survive some failures 
– Margin of safety 3X-6X vs. 
calculated load 

– (CS&E version of safety margin?) 



Slide 11 

Margin of Safety in CS&E? 
• Like Civil Engineering, never make dependable 
systems until add margin of safety (“margin 
of ignorance”) for what we don’t (can’t) know? 
– Before: design to tolerate expected (HW) faults 

• RAID 5 Story 
– Operator removing good disk vs. bad disk 
– Temperature, vibration causing failure before repair 
– In retrospect, suggested RAID 5 for what we 

anticipated, but should have suggested RAID 6 
(double failure OK) for unanticipated/safety margin? 

• CS&S Margin of Safety: Tolerate human 
error in design, in construction, and in use? 



Slide 12 

Outline 
 

• Recovery-Oriented Computing: Motivation 
 

• What Can We Learn from Other Fields? 
 

• ROC Principles and Lessons in Retrospect 
 

• ROC => AMP Lab (if time permits) 



Slide 13 

Recovery-Oriented Computing 
Philosophy 

“If a problem has no solution, it may not be a problem,  
but a fact, not to be solved, but to be coped with over time”  

— Shimon Peres (“Peres’s Law”)     
• People/HW/SW failures are facts, not problems 
• Recovery/repair is how we cope with them 
• Improving recovery/repair improves availability 

– UnAvailability =  MTTR 
      MTTF 
– 1/10th MTTR just as valuable as 10X MTTF 

(assuming MTTR much less than MTTF) 

• ROC helps Operators 
–   Less stress with faster repair times 

• ROC enables use of Statistical Machine Learning 
–   False positives OK if repair times fast 



Slide 14 

“ROC Solid” Principles 
1. Given errors occur, design to recover rapidly 
2. Given humans make errors, build tools to help 

operator find and repair problems 
3. Extensive sanity checks during operation 

– To discover failures quickly (and to help debug) 
4. Recovery benchmarks to measure progress 

– Recreate performance benchmark competition? 
– (Skip in interest of time) 



Slide 15 

Lessons and Observations from 
ROC 

• Fast recovery makes mistakes OK 
Observations: 
• The power of Statistical Machine Learning 
• Visualization to help convince operator of 
value of Statistical Machine Learning 

• REST (Representational State Transfer) 
– Skip for time constraints  



Slide 16 

Lesson: MTTR more valuable than 
MTTF??? 

• Originally: low MTTR allows MTTR<<MTTF so Avail--
>1.0 

• Now: other advantages of low MTTR 
• If MTTR is below “human threshold”, failure 

effectively didn’t occur 
– Example: microrebooting - if can serve a request in <8sec, user 

doesn’t see the failure 
• Tolerates false positives 

– Enables aggressive automatic techniques 
– If Administrator believes there’s a problem, can try “recovery” 

without incurring high cost if he’s wrong 



Slide 17 

MTTR more valuable than MTTF??? 
• MTTF normally predicted vs. observed 

– Include environmental error operator error, app bug? 
– Much easier to verify MTTR than MTTF! 

• If 99% to 99.9% availability, no change in prep 
–  1-3 months => 10-30 months MTTF,  still see failures  

• Threshold => non-linear return on improvement 
– 8 to 11 second abandonment threshold on Internet 
– 30 second NFS client/server threshold 
– Satellite tracking and 10 minute vs. 2 minute MTTR 

• Ebay 4 hour outage, 1st major outage in year 
– More people in single event worse for reputation? 
– One 4-hour outage/year => NY Times => stock? 
– What if 1-minute outage/day for a year? 

   (250X improvement in MTTR, 365X worse in MTTF) 



Slide 18 

Some ROC Accomplishment 
• Crash-only software design philosophy + 3 prototypes 

– Separation of data recovery from program recovery, and 
specially-designed crash-only state stores 

– Insight: crash-only-ness simplifies failure detection and 
recovery 

• Microrebooting components in J2EE applications 
– “Selective recovery” of bad J2EE components in tens of ms to 

hundreds of ms (2-3 orders of magnitude faster than restart) 
– Insight: Fast recovery makes mistakes OK 
– Insight: Short transient failures can be completely masked 
– REST (Representational State Transfer) is 2010 version of ideas 



Slide 19 

Crash Only Software 
• Crash-only software refers to code that 
handle failures by simply restarting, without 
attempting any sophisticated recovery 

• Components can microreboot into known good 
state without help of user 

• Failure handling and normal startup use same 
methods => more likely failure handling code 
is debugged 

• Managing state: try to have persistent state 
match running state for quick crash recovery  

• Influenced design of several software 
products, including Apple OS X 
 



Slide 20 

Visualizing & Mining User Behavior During Site 
Failures* 

• Idea: when site misbehaves, users notice, and change 
their behaviors; use this as a “failure detector” 

– Partially-supervised learning, since ground truth data often 
incomplete 

• Approach: does distribution of hits to various pages 
match the “historical” distribution?  

– each minute, compare hit counts of top N pages to hit counts 
over last 6 hours using Bayesian networks and χ2 test 

– combine with visualization so operator can spot anomalies 
corresponding to what the algorithms find 

• Evaluation: 
– Which site problems could have been avoided, or to what extent 

could they have been mitigated, with these techniques in place? 
– Ground truth evaluation of model findings: very hard 

 * P. Bodik, G. Friedman, H.T. Levine (Ebates.com), A. Fox, et al. In Proc. ICAC 2005. 



Slide 21 



Slide 22 

Potential Impact: Gaining Operator 
Trust 

• Combining SML with operator centric 
visualization 
– faster adoption (since skeptical sysadmins can turn 

off the automatic actions and just use the 
visualization to cross-check results) 

– earlier visual detection of potential problems, leading 
to faster resolution or problem avoidance 

– faster classification of false positives 
– Leveraging sysadmin’s existing expertise, and 

augmenting her understanding of its behavior by 
combining “visual pattern recognition” with SML 

• Increasing operators’ trust in automated 
techniques 



Slide 23 

Crisis identification is difficult,  
time consuming, costly, & lengthen MTTR  

Frequent SW/HW failures cause downtime 
 

Timeline of a typical crisis 
– detection: automatic, easy 
– identification: manual, difficult 

» takes minutes to hours 
– resolution: depends on crisis type 
– root cause diagnosis, documentation 

 
Web apps are complex and large-scale 

– app used for evaluation: 400 servers, 100 metrics 

O
K 

O
K 

CR
IS

IS
 3:00 AM 

3:15 
AM 

4:15 AM 

next day 



Slide 24 

Insight: performance metrics help 
identify recurring crises 

Performance crises recur 
– incorrect root cause diagnosis 
– takes time to deploy the fix 

» other priorities, test new code 
 

System state is similar during similar crises 
– but not easily captured by fixed set of metrics 
– 3 operator-selected metrics not enough 

“Fingerprinting the datacenter: automated classification of performance 
crises,” Peter Bodík, Moises Goldszmidt, Armando Fox, Dawn Woodard, 
Hans Andersen, Eurosys 2009. 

 



Slide 25 

Definition and examples of performance 
crises 

Performance crisis = violation of service-level 
objective (SLO) 
– based on business objectives 
– captures performance of whole cluster 
– example: >90% servers have latency < 100 ms during 

15-minute epoch 
 

Crises Bodik et al analyzed 
– app config, DB config, request routing errors 
– overloaded front-end, overloaded back-end 



Slide 26 

Fingerprints capture state of 
performance metrics during crisis 

Metrics as arbitrary time series 
– OS, resource utilization, workload, latency, app, … 
1: CPU utilization 

2: workload 

100: latency 
… … 

se
rv

er
 

1 

1: CPU utilization 
2: workload 

100: latency 
… … 

se
rv

er
 

2 

1: CPU utilization 
2: workload 

100: latency 
… … 

se
rv

er
 

10
00

 

… 

1: select 
relevant metrics 

2: summarize 
using quantiles 

3: map into  
hot/normal/cold 

4: average over 
time 

OK OK CRISIS 

crisis 
fingerprint 



Slide 27 

System under study 
24 x 7 enterprise-class user-facing application at 
Microsoft 

– 400 machines 
– 100 metrics per machine, 15-minute epochs 
– operators: “Correct label useful during first hour” 

 
Definition of a crisis 

– operators supplied 3 latency metrics and thresholds 
– 10% servers have latency > threshold during 1 epoch 

 
19 operator-labeled crises of 10 types 

– 9 of type A, 2 of type B, 1 each of 8 more types 
– 4-month period 



Slide 28 

Evaluation results 

Previously-seen crises: 
– identification accuracy: 77% 
– identified when detected or 1 epoch later 

For 77% of crises, average time to ID 10 
minutes 
– Could save up to 50 minutes; more if shorter epochs 

Accuracy for previously-unseen crises: 82% 
Suggested metrics operators didn’t realize 
were important 

Being deployed inside Microsoft 
 

 



Slide 29 

ROC Summary 
• Peres’s Law more important than Moore’s Law? 

– Must cope with fact that people, SW, HW fail 
• Recovery Oriented Computing is one path for 
operator synergy, dependability for servers 
– Significantly reducing MTTR (people/SW/HW)  

  => Better Dependability (reduce MTTR/MTBF) 
 => Reduce Operator Stress (less risk with fast repair) 
 => Enable Machine Learning (live with false positives) 

– Compete on recovery time vs. performance? 
– Careful isolation of state for crash only, quick MTTR 

http://ROC.cs.berkeley.edu 

http://roc.cs.berkeley.edu/


Slide 30 

AMP: Big Data Scalability Dilemma 

• Data Analytics frameworks can’t handle lots 
of incomplete, heterogeneous, dirty data 

• State-of-the Art Machine Learning 
techniques do not scale to large data sets 

• Processing architectures struggle with 
increasing diversity of programming models 
and job types 

• Adding people to a late project makes it 
later 
Exactly Opposite of what we Expect and Need 



Slide 31 

 
Algorithms, Machines, People (AMP) 

Adaptive/Active 
Machine Learning 

and Analytics 

Cloud Computing CrowdSourcing 

Massive 
and 

Diverse 
Data 

 
Team of experts in ML, Systems, & Crowds 

build ≈Real Time Big Data Analyzer 



Slide 32 

Extra Slides 
 



Slide 33 

Traditional Fault-Tolerance vs.ROC 
• >30 years of Fault-Tolerance research 
• FT greatest success in HW; ignores operator error? 

– ROC holistic, all failure sources: HW, SW, and operator 
• Key FT approach: assumes accurate model of hardware 

and software, and ways HW and SW can fail 
– Models to design, evaluate availability  

• Success areas for FT: airplanes, satellites, space 
shuttle, telecommunications, finance (Tandem) 

– Hardware, software often changes slowly  
– Where SW/HW changes more rapidly, less impact of FT research 

• ROC compatible with SW Productivity Tools, SW Churn 
of Internet Sites 

• Much of FT helps MTTF, ROC helps MTTR 
–   Improving MTTF and MTTR synergistic (don’t want bad MTTF!) 



Slide 34 

Time

Q
oS

 M
et

ric

0

• Recovery benchmarks quantify system behavior 
under failures, maintenance, recovery 
 
 
 
 

• They require 
– A realistic workload for the system 
– Quality of service metrics and tools to measure them 
– Fault-injection to simulate failures 
– Human operators to perform repairs 

Repair Time 
QoS degradation failure 

normal behavior 
(99% conf.) 

Recovery benchmarking 101 

Source: A. Brown, and D. Patterson, “Towards availability benchmarks: a case 
study of software RAID systems,” Proc.  USENIX, 18-23 June 2000  



Slide 35 

Example: 1 fault in SW RAID 

• Compares Linux and Solaris reconstruction 
– Linux: Small impact but longer vulnerability to 2nd fault 
– Solaris: large perf. impact but restores redundancy fast 
– Windows: did not auto-reconstruct! 

Linux 

Solaris 



Slide 36 

Software RAID: QoS behavior 
• Response to double-fault scenario 

– a double fault results in unrecoverable loss of data on 
the RAID volume  

– Linux: blocked access to volume 
– Windows: blocked access to volume 
– Solaris: silently continued using volume, delivering 

fabricated data to application! 
» clear violation of RAID availability semantics 
» resulted in corrupted file system and garbage data at the 

application level 
» this undocumented policy has serious availability 

implications for applications 



Slide 37 

REST (Representational State 
Transfer) 

• Roy Fielding’s PhD thesis, 2000 
• Wikipedia: “REST can be considered as a post 

hoc description of the features of the Web 
that made the Web successful” 

• Idea: everything in your system (in this case, 
the Web) is a resource 

• Requests specify one of a fixed set of 
operations on some representation of that 
resource 

 
 



Slide 38 

RESTful requirements 
• Client-server, with client separated from 
server by a uniform interface 

• Stateless:  each request carries all necessary 
info for server to complete it 

• Cacheable:  responses must specify if 
representation of resource returned may be 
cached for future use 

• Layered:  intermediaries can pass on requests, 
transparently to client or server 



Slide 39 

REST and Web Services 
• A RESTful web service advertises  

– a base URI 
– a way to name a specific resource, starting from that 

base URI 
– MIME types (JSON, XML, XHTML, ...) supported by 

available representation(s) of resource 
–  a set of requests specifying what can be done to the 

resource 
–  well-defined semantics for each request type 



Slide 40 

REST Summary 
• A key difference between SaaS and SWS is 

how to encapsulate state 
• REST forces you to think about this up front 
• Highly recommended:  Wikipedia article on 

REST 


	Recovery Oriented Computing (ROC)
	Outline
	The past: research goals and�assumptions of last 20 years
	Dependability: Claims of 5 9s?
	“Microsoft fingers technicians �for crippling site outages”
	Learning from other fields: disasters
	Learning from other fields: human error
	Human error
	The ironies of automation
	Learning from others: Bridges
	Margin of Safety in CS&E?
	Outline
	Recovery-Oriented Computing Philosophy
	“ROC Solid” Principles
	Lessons and Observations from ROC
	Lesson: MTTR more valuable than MTTF???
	MTTR more valuable than MTTF???
	Some ROC Accomplishment
	Crash Only Software
	Visualizing & Mining User Behavior During Site Failures*
	Slide Number 21
	Potential Impact: Gaining Operator Trust
	Crisis identification is difficult, �time consuming, costly, & lengthen MTTR 
	Insight: performance metrics help identify recurring crises
	Definition and examples of performance crises
	Fingerprints capture state of performance metrics during crisis
	System under study
	Evaluation results
	ROC Summary
	AMP: Big Data Scalability Dilemma
	�Algorithms, Machines, People (AMP)
	Extra Slides
	Traditional Fault-Tolerance vs.ROC
	Recovery benchmarking 101
	Example: 1 fault in SW RAID
	Software RAID: QoS behavior
	REST (Representational State Transfer)
	RESTful requirements
	REST and Web Services
	REST Summary

